ASM

Features

- Solid-state silicon-avalanche technology
- ► 30 Watts Peak Pulse Power per Line (tp=8/20µs)
- ► Low operating and clamping voltages
- ▶ Up to Four (4) Lines of Protection
- ► Working Voltages: 5 V
- Low Leakage Current

Complies with the following standards IEC61000-4-2

15 kV (air discharge) 8 kV(contact discharge)

Applications

- Cellular Handsets & Accessories
- Personal Digital Assistants (PDAs)
- Notebooks & Handhelds
- Portable Instrumentation
- Digital Cameras
- MP3 Player

MAXIMUM RATINGS(Ta = 25°C)

Rating	Symbol	Value	Unit
Peak Pulse Power (tp = 8/20s)	Ррр	30	W
Maximum lead temperature for soldering during 10s	TL	260	°C
Storage Temperature Range	Tstg	-40 to +125	°C
Operating Temperature Range	Тор	-40 to +125	°C

ELECTRICAL CHARACTERISTICS

(T_A = 25°C unless otherwise noted)

Symbol	Parameter	
V _{RWM}	Peak Reverse Working Voltage	
I _R	Reverse Leakage Current @ V _{RWM}	
V _{BR}	Breakdown Voltage @ I _⊺	
Ι _Τ	Test Current	
I _{PP}	Maximum Reverse Peak Pulse Current	
Vc	Clamping Voltage @ IPP	
P _{PP}	Peak Pulse Power	
CJ	Junction Capacitance	
I _F	Forward Current	
V _F	Forward Voltage @ I _F	

Electrical characteristics (TA=25 °C ,unless otherwise noted)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Reverse stand-off voltage	V _{RWM}				5.0	V
Reverse leakage current	I _R	$V_{RWM} = 5V$			1.0	uA
Reveres breakdown voltage	V_{BR}	I _T =1mA	6.0	7.5		V
Clamping voltage	Vc	Ipp=2A tp=8/20us		11.0		V
		VR = 0V, f = 1MHz (I/O-I/O)		6.5	10.0	pF
Junction capacitance	CJ	VR = 0V, f = 1MHz (I/O-GND)			20.0	pF

Typical Characteristics

Figure 2: Power Derating Curve

Figure 3: Insertion Loss

Application Information

The are TVS arrays designed to protect I/O or data lines from the damaging effects of ESD or EFT. This product provides unidirectional protection; the device is connected as follows:

UNIDIRECTIONAL COMMON-MODE CONFIGURATION

The provides up to four (4) lines of protection in a common-mode configuration as depicted in Figure 1. Circuit connectivity is as follows:

- I/O 1 is connected to Pin 5.
- I/O 2 is connected to Pin 4.
- I/O 3 is connected to Pin 3.
- I/O 4 is connected to Pin 1.
- Pin 2 is connected to ground.

Figure 1 Unidirectional Configuration Common-Mode I/O Port Protections

CIRCUIT BOARD LAYOUT RECOMMENDATIONS

Circuit board layout is critical for Electromagnetic Compatibility (EMC) protection.

The following guidelines are recommended:

- >The protection device should be placed near the input terminals or connectors, the device will divert the transient current immediately before it can be coupled into the nearby traces.
- > The path length between the TVS device and the protected line should be minimized.
- > All conductive loops including power and ground loops should be minimized.
- > The transient current return path to ground should be kept as short as possible to reduce parasitic inductance.
- > Ground planes should be used whenever possible. For multilayer PCBs, use ground vias.

Outline Drawing - SOT-553

DIMENSIONS					
	INCHES		MILLIMETER		
STMBUL	MIN	MAX	MIN	MAX	
A	0.021	0.024	0.525	0.600	
b	0.007	0.011	0.170	0.270	
С	0.004	0.006	0.090	0.160	
D	0.059	0.067	1.500	1.700	
E	0.059	0.067	1.500	1.700	
E1	0.043	0.051	1.100	1.300	
е	0.018	0.022	0.450	0.550	
L	0.004	0.012	0.100	0.300	

DIMENSIONS			
DIM	INCHES	MILLIMETERS	
z	0.0708	1.80	
G	0.0354	0.90	
Р	0.0197 TYP	0.50 TYP	
x	0.0118	0.3	
Y	0.0177	0.45	

Notes

- Dimensioning and tolerances per ANSI Y14.5M, 1985.
 Controlling Dimension: Inches
 Dimensions are exclusive of mold flash and metal burrs.