

5-Lines Unidirectional Ultra-low Capacitance Transient Voltage Suppressors

Descriptions

The ESD5M030TR is an ultra-low capacitance TVS (Transient Voltage Suppressor) array designed to protect high speed data interfaces. It has been specifically designed to protect sensitive electronic components which are connected to data and transmission lines from over-stress caused by ESD (Electrostatic Discharge).

The low capacitance array configuration allows the user to protect four high-speed data or transmission lines. The low inductance construction minimizes voltage overshoot during high current surges. This device is optimized for ESD protection of portable electronics. They may be used to meet the ESD immunity requirements of IEC 61000-4-2, (±30kV air, ±30kV contact discharge).

Features

- Transient protection for high-speed data lines to IEC 61000-4-2 (ESD) ±30kV (air), ±30kV (contact) IEC 61000-4-4 (EFT) 40A (5/50ns)
- Array of surge rated diodes with internal TVS Diode
- Small package (2.4 x 2.2mm) saves board space
- Protects up to four I/O lines & power line
- Low capacitance (<1pF) for high-speed interfaces
- No insertion loss to 2.0GHz
- Low leakage current and clamping voltage
- Low operating voltage: 5.0V
- Solid-state silicon-avalanche technology

Applications

- USB 2.0
- USB OTG
- Monitors and Flat Panel Displays
- Gigabit Ethernet
- SIM Ports
- IEEE 1394 Firewire Ports

Order information

Device	Package	Shipping	Marking
ESD5M030TR	SOT-26	3000/Tape&Reel	V05

Absolute maximum ratings

Rating	symbol	value	Units	
Peak Pulse Current(tp=8/20us)	Ipp Pin1/3/4/6~Pin2	4	А	
Peak Pulse Current(tp=8/20us)	pp Pin5~Pin2	20	А	
ESD per IEC61000-4-2(Contact)		±30	KV	
ESD per IEC61000-4-2(Air)	VESD	±30		
Operating Temperature	TJ	-55~125	٦°	
Lead temperature	TL	260	٦°	
Storage Temperature	TSTG	-55~155	°C	

Electrical characteristics (TA=25 oC, unless otherwise noted)

Parameter	Symbol	Conditions	Min.	TYP.	Max.	Units
Reverse stand-off voltage	VRWM				5.0	V
Reverse leakage current	lr	V _{RWM} =5V			1.0	uA
Reveres breakdown voltage	Vbr	l⊤=1mA	6.0	7.5		V
Clamping voltage	Vc Pin1/3/4/6~Pin2	I _{PP} =1A(8/20us)		9.0		V
		I _{pp} = 4A(8/20us)		13.5	15.0	V
Clamping voltage	Vc Pin5~Pin2	I _{PP} =1A(8/20us)		8.5		V
		I _{pp} = 20A(8/20us)		20.0	22.0	V
Junction capacitance	CJ Pin1/3/4/6~Pin2	VR=0V f=1MHz		0.5	0.8	pF
Junction capacitance	CJ _{Pin5~Pin2}	VR=0V f=1MHz		150		pF

ASM

POWER DERATION CURVE

P_D - Ta

PULSE WAVEFORM

Figure 2. ESD Clamping Voltage Screenshot Negative 8 kV Contact per IEC61000-4-2

Applications Information

Device Connection Options for Protection of Four High-Speed Data Lines

This device is designed to protect data lines by clamping them to a fixed reference. When the voltage on the protected line exceeds the reference voltage the steering diodes are forward biased, conducting the transient current away from the sensitive circuitry. Data lines are connected at pins 1, 3, 4 and 6. Pin 2 should be connected directly to a ground plane. The path length is kept as short as possible to minimize parasitic inductance.

The positive reference is connected at pin 5. The options for connecting the positive reference are as follows:

- 1. To protect data lines and the power line, connect pin 5 directly to the positive supply rail (V_{cc}). In this configuration the data lines are referenced to the supply voltage. The internal TVS diode prevents over-voltage on the supply rail.
- In applications where the supply rail does not exit the system, the internal TVS may be used as the reference. In this case, pin 5 is not connected. The steering diodes will begin to conduct when the voltage on the protected line exceeds the working voltage of the TVS (plus one diode drop).
- 3. In applications where complete supply isolation is desired, the internal TVS is again used as the reference and V_{cc} is connected to one of the I/O inputs. An example of this configuration is the protection of a SIM port. The Clock, Reset, I/O, and VCC lines are connected at pins 1, 3, 4, and 6. Pin 2 is connected to ground and pin 5 is not connected.

Matte Tin Lead Finish

Matte tin has become the industry standard lead-free replacement for SnPb lead finishes. A matte tin finish is composed of 100% tin solder with large grains. Since the solder volume on the leads is small compared to the solder paste volume that is placed on the land pattern of the PCB, the reflow profile will be determined by the requirements of the solder paste. Therefore, these devices are compatible with both lead-free and SnPb assembly techniques. In addition, unlike other lead-free compositions, matte tin does not have any added alloys that can cause degradation of the solder joint.

Protection of Four Data Lines and Power Supply Line

Protection of Four Data Lines Using Internal TVS Diode as Reference

Typical Applications

SIM Port - Protection of Three Data Lines and VCC

USB OTG Carkit Protection

Typical Applications

SOT-26 PACKAGE OUTLINE & DIMENSIONS

DIMENSIONS						
DIM	INCHES			MILLIMETERS		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	.035	1.2.5	.057	0.90	2	1.45
A1	.000	(1 9 0)	.006	0.00	-	0.15
A2	.035	.045	.051	.90	1.15	1.30
b	.010	-	.020	0.25	-	0.50
С	.003	(1+C)	.009	0.08		0.22
D	.110	.114	.122	2.80	2.90	3.10
E1	.060	.063	.069	1.50	1.60	1.75
E	.110 BSC			2.80 BSC		
е	.037 BSC			0.95 BSC		
e1	.075 BSC			1.90 BSC		
L	.012	.018	.024	0.30	0.45	0.60
L1	(.024)			(0.60)		
N	6			6		
0 1	0°	3:237	10°	0°		10°
aaa	.004			0.10		
bbb	.008			0.20		
CCC	.008			0.20		

*** SOLDERING FOOTPRINT**

DIMENSIONS				
DIM	INCHES	MILLIMETERS		
С	(.098)	(2.50)		
G	.055	1.40		
Р	.037	0.95		
Х	.024	0.60		
Y	.043	1.10		
Ζ	.141	3.60		